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Although the structure and function of the human visual
system are determined in large part during early
development, there is ample evidence for adult plasticity
as well. Such plasticity has important consequences for
restoring vision after cortical damage and for improving
function in healthy people. Although these applications
have shown promising results, they are often limited by
pathological specificity: improvements obtained through
perceptual training fail to generalize beyond the trained
stimulus feature or location. Efforts to reduce specificity
have focused on the design of training tasks, but less is
known about the effects of stimulus structure on the
specificity of perceptual learning. Here, we leverage
physiological findings from the dorsal visual pathway of
the primate brain to explore the hypothesis that
learning specificity is related to the complexity of the
training stimulus. Specifically, because neurons in
higher-level structures of the dorsal visual pathway
exhibit little stimulus specificity, we reasoned that
training with more complex stimuli would reduce the
specificity of learning. We trained human observers on
stimuli of varying complexity, ranging from simple
sinewave gratings to complex optic flow fields. Our
results show that training with more complex stimuli
reduces specificity for spatial position and stimulus
features. Such changes are associated with increased
spatial integration. These findings were captured by a
computational “reweighting” model that decoded the
outputs of simulated neurons in areas middle temporal
(MT) and medial superior temporal (MST) of the primate
visual cortex. Our results suggest that the addition of
more complex stimuli into perceptual learning
paradigms provides a simple and effective way to
minimize specificity in learning.

Introduction

The visual system is highly plastic during early life
(Hubel, Wiesel, LeVay, Barlow, & Gaze, 1977), and
recent work has demonstrated substantial plasticity in
adults as well. Specifically, the field of visual perceptual
learning has shown that training leads to changes in
the ability to discriminate orientations, colors, shapes,
and other stimulus features (Goldstone, 1998; Seitz &
Watanabe, 2005). However, to be of practical utility, the
effects of perceptual learning should generalize beyond
the stimuli used during training, and as a result there is
considerable research devoted to the question of the
specificity (or conversely, the transfer) of perceptual
learning (Ahissar & Hochstein, 1997; Jeter, Dosher,
Petrov, & Lu, 2009).

In all likelihood, the specificity of perceptual learning
is related to the hierarchical organization of the visual
cortex: low-level cortical areas, such as V1, exhibit
exquisite specificity for low-level stimulus features,
such as orientation and spatial position. Higher-level
structures, in contrast, are often selective for stimulus
features, such as shape or motion, with little dependence
on the precise composition of the stimulus or its spatial
position. Thus, the challenge of reducing the spatial
specificity of perceptual learning can be formulated
in terms of increasing the contributions of neurons in
higher-level cortical areas to the perceptual response
(Dosher, Jeter, Liu, & Lu, 2013).

Previous work using causal manipulation of neural
activity has shown that the perceptual reweighting of
visual areas is highly sensitive to the training procedure.
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Figure 1. Schematic presentation of the dorsal visual pathway: Areas V1, MT, and MST are three visual areas that encode motion
stimuli in the dorsal pathway. Their stimulus selectivity is different as higher areas prefer more complex moving patterns. The small
vertical lines next to each area represent the firing rates of a typical neuron in each area evoked by each stimulus type. Stimulus 1 and
2 represent the preferred and null motion direction, respectively, for a typical neuron in each area (i.e. leftward/rightward motion for
DG and RDK, or expansion/contraction for optic flow). The size of the receptive fields also increased from the lower to higher areas.
Colored dashed circles show the ordinal arrangement of receptive field size of each area (not drawn to scale). Each sensory visual area
projects to a downstream sensorimotor/decision making area that integrates inputs from the three areas. The contribution of each
sensory area to the decision or action depends on its readout weight (WV1,WMT, andWMST). According to our hypothesis, training
with the stimulus that elicits the highest selectivity in an area (e.g. drifting grating in V1) increases the readout weight of that area
(e.g.WV1).

Specifically, the stimulus used during training has a
profound effect on the contribution of individual brain
structures, as assessed by protocols in which specific
areas are inactivated at different times relative to the
training (Chang, Mevorach, Kourtzi, & Welchman,
2014; Chen, Cai, Zhou, Thompson, & Fang, 2016;
Chowdhury & DeAngelis, 2008; Liu & Pack, 2017;
Walsh, Ashbridge, & Cowey, 1998). These results show
that greater weight can be accorded to different brain
structures by training with appropriate stimuli.

These considerations lead to a straightforward
hypothesis: Training with stimuli that are selectively
encoded in higher-level structures will lead to perceptual
learning with less specificity (Das, Tadin, & Huxlin,
2014; Fine & Jacobs, 2002; McGovern, Webb, & Peirce,
2012; Zhang & Tadin, 2019), both for spatial position
and for stimulus features. Recent evidence in support
of this idea comes from a study (Liu & Pack, 2017) in

which the contribution of the middle temporal (MT)
area to motion perception in non-human primates was
found to depend on the stimulus used during training.
Inactivation of MT devastated performance after the
animals had been trained on complex random dot
kinematograms, but had little effect when they had been
trained on simple grating stimuli. The effects of training
with complex stimuli transferred to simpler stimuli and
showed some evidence of greater spatial generalization.

In this study, we examine the relationship between
stimulus complexity and the specificity of perceptual
learning (Fig. 1). Consistent with previous work (Fahle,
1997; Huxlin et al., 2009), we find that observers trained
to discriminate the properties of grating stimuli exhibit
specificity for spatial position. In contrast, observers
trained with more complex stimuli, such as optic flow
patterns, exhibit far less specificity. Reduced spatial
specificity is associated in all cases with greater spatial
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integration, lending strong support for the idea that
training with complex stimuli leads to a reweighting
of the perceptual contributions of higher-level cortical
areas.

Methods

Experimental procedure

Observers and apparatus
Fifteen healthy observers (age 22 ± 3.18, 10 women)

participated in this study. All observers were naïve to
visual psychophysics and unaware of the purpose of the
study. Each observer gave written, informed consent
prior to participation in the study, which was approved
by the Ethics Committee of the Montreal Neurological
Institute and Hospital (NEU-06-033).

The stimuli were generated in MATLAB with
Psychtoolbox (Brainard, 1997), and presented on a
21-inch hp Trinitron CRT monitor (1024 pixel × 768
pixel, 0.37 mm [H], 0.37 mm [V] per pixel, 85 Hz
frame rate). Observers were seated 57 cm from the
screen, and their heads were stabilized with a chin-rest.
Experiments were run in a normally lit room.

Visual stimuli
Experiment 1: This experiment had two training
phases: (1) drifting grating (DG) motion discrimination
(left versus right), and (2) translation random-dot
kinematogram (RDK) motion discrimination (left
versus right). For a subgroup of observers (three
observers), we included a third phase, in which we
repeated the first phase of training with DG motion
discrimination. The DG stimuli were Gabor patches,
with spatial and temporal frequencies set to 1 cycle /
degree and 8 cycles / second. The sizes of the Gabor
patches (2 SDs of the Gaussian envelope) were set
according to the test and train conditions in each
experiment (see below for details). The RDK stimuli
consisted of small (0.1o) white and black dots, at
a density of 2.6 dots/degree2, presented on a grey
background (luminance 63.1 cd/m2). Each stimulus
was windowed inside a circular aperture 6 degrees in
diameter. The dots presented on each frame either
belonged to the signal or to the noise group. The signal
dots moved coherently in a specific direction, whereas
the noise dots moved randomly in different directions.
The coherence level of the random-dot stimulus
determined the proportion of the dots that belonged to
the signal group. The horizontal and vertical velocity of
each dot followed the equation below:

(u, v) = ν0 (cosθ1, sinθ1) .

For dots that carried the global motion signal, θ1
was set to 0 for leftward motion and π for rightward

motion. For the noise dots, the value of θ1 was chosen
randomly between (0, 2 π ). The x and y denote the
horizontal and vertical location of each dot in the visual
field (in degrees). The ν0 represents the dot velocity and
was set to 10°s−1. For both the RDK and DG stimuli,
the duration on every trial was 70.6 ms, corresponding
to 6 frames at the 85 Hz refresh rate. The stimulus
during training was positioned in the upper fight visual
field at an eccentricity of 5 degrees.
Experiment 2: This experiment had two training
phases: (1) translation RDKmotion discrimination (left
versus right), and (2) optic flow random-dot motion
discrimination (expansion versus contraction). For a
subgroup of observers (four observers), we included
a third phase, in which we repeated the first phase
of training with RDK motion discrimination. The
translation RDK stimulus was identical to the one used
in the second phase of experiment 1. For the optic flow
stimulus, the horizontal and vertical velocity of each
dot followed the equation below:

(u, v) = ω0 (xcosθ2 − ysinθ2, xsinθ2 + ycosθ2)

For signal dots, the value of θ2 was set to π /2 or 3π /2
for expansion or contraction, respectively. For the noise
dots, the value of θ2 was chosen randomly from (0, 2π ).
We set the radial velocity ω0 to 4 Hz. Coherence was
modulated in a fashion analogous to that used for the
translation RDKs.

Although all observers were able to perform the
translation RDK task well on the first session, we
noticed in pilot experiments that some observers
initially struggled with the optic flow stimulus. Given
the longer temporal integration for optic flow compared
with translation RDK (Burr & Santoro, 2001), we,
therefore, used a slight longer duration for these stimuli
(94.1 ms, corresponding to 8 monitor frames).

Training procedure
Every observer completed 8 to 10 days of training

sessions for each phase of the two experiments. In
each training session, observers completed five blocks
of training, where each block consisted of 125 trials
that lasted in total about 5 to 6 minutes. Between
the training blocks, observers took a 1-minute break,
after which the next block automatically began. In
total, each training session was about 30 minutes
long.

At the beginning of each training block, the stimulus
coherence in the random-dot stimuli was set to 0.7, and
the stimulus contrast in the DG stimulus was set to 0.5.
Both coherence and contrast changed in an adaptive
procedure (see below) to maintain the difficulty level
throughout the training blocks and sessions for the two
tasks. The stimulus location during the training phase
was the same for all observers and in both experiments
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(upper-right quadrant at 5 degrees distance from
the fixation point). This was done to avoid potential
variable across observers due to differences in the
training location.

Each trial began with the acquisition of fixation on a
central point. Eye position was monitored throughout
each trial (EyeLink 1000) and required to be within
1 degree of the fixation point for the trial to be
included in subsequent analyses. After each stimulus
presentation, observers reported their perception using
a keyboard button press, which then started the next
trial. Observers were compensated for their time in
proportion to the number of correct responses (¢1 per
correct trial).

Testing procedure
After each training phase, observers were tested on

spatial integration and specificity. The stimulus used
for the testing procedures at the end of both training
phases was the simpler stimulus: DGs for experiment 1,
and translation RDK motion for experiment 2.

For the spatial integration task, the stimulus was
presented in the same location as the training stimulus,
but the discrimination threshold was measured at
different stimulus sizes. The threshold for DG contrast
was evaluated at stimulus diameters of 1.25, 5,
8.75, 12.5, 16.25, and 20 degrees. The threshold for
translation RDK motion discrimination was evaluated
at diameters of 6, 12, 18, 24, 30, and 36 degrees. The
choice of sizes for the two types of stimuli was based on
two observations: first, we found that strong surround
suppression and near-chance level performance at large
stimuli made it difficult to evaluate DG thresholds for
stimuli beyond 20 degrees in size. Second, RDK stimuli
smaller than 6 degrees in diameter would contain few
random dots, leading to unreliable and high trial-to-trial
variability in motion signals.

To measure the spatial specificity of the learned
improvement, the test stimulus was presented with the
same aperture size as in the training, but in different
locations of the visual field. The eccentricity of the
stimulus was preserved for different test locations (5
degrees). Eight positions on the vertical, horizontal,
and oblique meridians of the visual field were used for
the transfer evaluation (Figure 2b).

Staircase procedure

A 2-down-1-up staircase procedure (step down
to step up ratio �−/�+ = 0.5488) was used for
setting the coherence of the random-dot stimulus
(Leek, 2001). The staircase procedure resulted in an
80.3% convergence level. The last six reversals of the
staircase were averaged to estimate the discrimination
thresholds.

Statistical analysis

The discrimination threshold was measured using
the staircase procedure in each training block. The
thresholds were then averaged over training blocks on
each day to track the performance improvement across
days.

As explained above, to evaluate the spatial integration
after each training phase, observers’ discrimination
thresholds were measured with different stimulus sizes.
To obtain a quantitative measure of spatial integration,
we fitted a difference of error functions to the threshold
values as a function of stimulus sizes (Pack, Hunter, &
Born, 2005; Uka & DeAngelis, 2003):

R (s) = Geerf
(

s
ae

)
− Gierf

(
s
ai

)

R(s) represents the discrimination threshold at stimulus
size s. In this model, the threshold at every stimulus
size is determined by an excitatory (Geerf( s

ae
)) and

an inhibitory (Gierf( s
ai
)) components that interact

through subtraction. The gains of the excitatory and
inhibitory components (Ge and Gi), and the excitatory
and inhibitory area sizes (ae and ai) were estimated by
fitting the model to the measured thresholds. We used
a nonlinear least square curve fitting method to fit the
model to our data (lsqcurvefit MATLAB function with
Trust-Region-Reflective optimization). The estimated
excitatory area ae was used as the spatial integration
index (SI).

To quantify the spatial specificity of the learning
effect, we fitted a linear model to the measured
thresholds as a function of distance from the training
location. The slope of the fitted line was used as the
specificity index. Higher specificity leads to larger
slopes, because the threshold increases as the distance
from the trained location increases. Slope values
that are close to zero show threshold values that are
almost equal for different distances from the trained
location.

We used linear mixed-effect analysis for statistical
comparisons between conditions. The experimental
conditions (e.g. post-training phase 1) were used as
categorical fixed-effect variables, and the measured
spatial integration or spatial specificity were set as the
output variables. The identity of the observers was used
as the random-effect. We used the fitlme function in
MATLAB to fit the mixed-effect models to our data.

Computational model

Our computational model consisted of a sensory
visual representation stage that encodes the visual
stimuli, and a decoder that reads out from the sensory
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neurons to make a perceptual decision. The sensory
representations are assumed to be located in area MT,
which is known to encode translation motion of the
kind we studied in experiment 1 (Cui, Liu, Khawaja,
Pack, & Butts, 2013; Dubner & Zeki, 1971; Lagae,
Maes, Raiguel, Xiao, & Orban, 1994) and area medial
superior temporal (MST), which encodes the optic flow
stimuli that we studied in experiment 2 (Duffy, 1998;
Lagae et al., 1994; Mineault, Khawaja, Butts, & Pack,
2012). The decoder is simply a linear readout that could
be implemented in many different brain regions.

The structure of our MT-MST model followed a
previously established hierarchical model of the dorsal
visual pathway (Mineault et al., 2012) (Figure 6a).
Model MT neurons had retinotopic two-dimensional
Gaussian receptive fields that spanned the visual field
(− 15° to 15° horizontal and vertical visual angles at
0.2° resolution):

G
(
x, y, cx, cy, σ

) = exp

(
− (x − cx)2 + (

y − cy
)2

2σ 2

)

Where cx and cy are the horizontal and vertical
coordinates of the receptive field center, and σ σ is the
width of the receptive field set to be 2 or 4 degrees.
The MT neurons were also tuned to different motion
directions and speeds, which were modeled as follows:

V (ρ (x, y) , ν )= exp

(
− (log (ρ (x, y) + 1) − ν )2

2σρ
2

)

− exp

(
− (log (ρ (x, y)+1)+ν)2

2σρ
2

)

D (θ (x, y) , 	) = exp (σθ cos (θ (x, y) − 	)) − 1

where, preferred speeds (ν) and direction (	) are chosen
from {5, 12, 30} degrees

s and {0, 45, 90, 135, 180} degrees,
respectively. The speed tuning width σρ was set to σρ =
1, and the direction tuning width was chosen to be σ θ

= 2.5 similar to the tuning properties of MT neurons
reported in MT (Albright, 1984; Nover, Anderson, &
DeAngelis, 2005).

The direction, speed, and position tunings were then
combined to determine the firing rate of the neuron:

fMT (ρ, θ, x, y)= g(G(x, y, cx, cy, σ ).V (ρ(x, y), ν ).
D(θ (x, y), 	))

where g = max (x, 0)0.2 is a compressive nonlinearity
that has been shown to be essential in buildingMST-like
tuning from MT responses (Mineault et al., 2012).

Every MST unit received inputs from N MT neurons
(N = 15 here) with receptive fields centered within the
receptive field of the MST unit. The N MT neurons
were linearly combined:

fMST = h

⎛
⎝ ∑

x,yεA

N∑
i=1

wi f iMT (ρ, θ, x, y)

⎞
⎠

where wi is the synaptic strength between the ith MT
neuron and the MST neuron, which can be excitatory
(positive values) or inhibitory (negative values). The wi
was sampled randomly from (0, 1] or [ − 1, 0), with 0.2
probability of being sampled from the negative range.
A represents the receptive field of the MST neuron. The
h = max (x, 0) is a half-wave rectification nonlinearity.
The fMST was spatially convolved with the output of the
MT representation of the stimulus, and then spatially
subsampled (max-pooling) to form the MST output
(Fukushima, 1988). The combination of MT inputs
with different direction, speed, and position tunings
rendered MST neurons sensitive to more complex
motion patterns, whereas the spatial convolution and
max-pooling helped to decrease the spatial specificity
of the representation at the MST stage compared to
MT (Fukushima, 1988).

The output of the MT and MST population were
then passed to an adaptive decoder that linearly
combined the responses of the neurons and decided
on the motion direction. The adaptive decoder has
been previously proposed to model different aspects
of visual perceptual learning in humans (Jacobs,
2009). The decoder linearly decodes motion direction
given the output of a subset of sensory neurons.
Initially, the adaptive decoder pools the output of
M randomly chosen sensory neurons (across MT
and MST population; here M = 5) to determine
the probability of one motion direction versus the
other:

p
(
d = θ |X = {

MT ∗,MST ∗})
= 1

1 + exp (w0 + wX )

Throughout the training, in every iteration, the
adaptive decoder drops the least informative neuron,
and randomly selects another neuron to add to the
pool of readout neurons. After many iterations, the
decoder converges to a subset of sensory neurons that
are most optimal for solving the training task. The
discrimination threshold of the decoder is determined
by finding the stimulus coherence or contrast that yields
85% decision accuracy.
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Results

Our experiments are motivated by physiological
observations in the dorsal visual pathway, which is
specialized for motion processing. As shown in Figure 1,
neuronal receptive field sizes increase as one follows
the dorsal pathway from V1 to MT to MST (Gattass
& Gross, 1981; Raiguel et al., 1997). Crucially for our
study, the increase in receptive field sizes is accompanied
by changes in the stimulus selectivity in each area.
Specifically, tuning for simple motion stimuli, such
as DGs, is found at every stage along the pathway,
although it decreases at higher-level stages (Khawaja,
Liu, & Pack, 2013). In contrast, preferences for more
complex motion stimuli, such as optic flow, emerge in
MST (Duffy &Wurtz, 1991; Lagae et al., 1994; Tanaka,
Fukada, & Saito, 1989).

Given the standard assumption that perceptual
learning entails a reweighting of the contributions from
neurons in these different areas (Dosher et al., 2013),
we reasoned that the spatial properties of perceptual
learning should be influenced by the complexity
of the stimuli used during training. Specifically,
spatial integration (the propensity of observers to
combine visual signals across spatial locations) should
increase following training with complex stimuli, as
the contribution of neurons with larger receptive
fields is increased. For the same reason, the spatial
specificity of learning should be lower after training
with more complex stimuli, because neurons with large
receptive fields generalize stimulus selectivity across
space. In this section, we test these hypotheses with
two psychophysical experiments, and then examine a
computational model that formalizes the intuitions
illustrated in Figure 1.

Experiment 1: Drifting grating versus random
dots

Our first set of experiments made use of DG
stimuli (Gabor patches) and RDKs. DG stimuli
are well-matched to the receptive field properties of
orientation selective neurons in the primary visual
cortex (V1) and other low-level cortical areas. They
also contain motion information that is available
locally, with no need for spatial integration. In contrast,
RDKs are complex, because they are noisy and,
hence, accurate estimation of their motion requires
integration across space and local motion directions
(Britten, Shadlen, Newsome, & Movshon, 1993). As a
result, these stimuli yield poor selectivity in areas like
V1 (Snowden, Treue, & Andersen, 1992), but strong
selectivity in higher-level cortical structures, such as
the MT (Albright, 1984; Britten et al., 1993) and MST
(Duffy, 1998) regions.

In this and subsequent experiments, we probed the
spatial properties of perceptual learning in two ways.
The first measure was spatial integration, defined as
the task performance for stimuli of different sizes.
This provides a measure of the extent to which
observers integrate across space, and it correlates with
receptive field sizes in the brain regions contributing
to perceptual decisions (Liu, Haefner, & Pack, 2016;
Tadin, Silvanto, Pascual-Leone, & Battelli, 2011). The
second was a direct measure of spatial specificity: we
tested psychophysical performance for stimuli placed at
different positions in the visual field. According to the
logic outlined in the Introduction, training with simple
stimuli, such as DGs, should yield high specificity with
little spatial integration, whereas training with RDKs
should decrease specificity and increase integration
(Figure 2a).

Six observers were recruited for this experiment and
underwent two phases of perceptual training. In the
first phase (8–10 days), they were trained to discriminate
between leftward and rightward motion of the DG
stimuli. The contrast of the grating was modulated in
a staircase procedure on every trial (see Methods). In
the second phase (8–10 days), the same observers were
trained on leftward/rightward motion discrimination
with RDKs. The coherence of the moving dots was
modulated on every trial in a staircase procedure. The
training stimuli in both phases were of the same size (6
degrees in diameter). At the end of each phase, each
observer’s motion discrimination performance across
stimulus sizes was measured with the DG stimulus.
This was done to provide a fair comparison across
training phases, but, as we show below, the results are
not specific to the DG stimulus. Performance in this
and in subsequent experiments was defined in terms
of sensitivity, which is the reciprocal of the threshold
contrast or coherence.

Spatial integration
As shown in Figure 3a, the motion sensitivity of

observers improved in both training tasks (first phase:
F(1,10) = 7, p = 0.024 − second phase: F(1,10) =
22.47, p < 0.001), demonstrating the effectiveness
of the training. As outlined in the Introduction, if
training with complex stimuli leads to an increase
in the weighting of neurons in higher-level cortex,
observers should exhibit increased spatial integration
after training with RDKs. That is, their motion
discrimination performance should improve for larger
stimuli after training with complex stimuli.

Figure 3b shows the spatial integration curve
measured at the end of the first and the second training
phases (averaged across observers). After training with
DGs, the spatial integration curve (black line) peaked
for a stimulus size of approximately 5 degrees and
then decreased sharply with increasing stimulus size, as
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Figure 2. The experimental paradigm. (a) Schematic presentation of our experimental paradigm: each square represents the
upper-right quadrant of the visual field. The small, red square (at the lower-left corner of each square) shows the central fixation
point. Training on drifting grating for 8 to 10 days (top row, first column) increases the readout weight of an area with small receptive
fields, such as V1 (top row, second column). Because of the small receptive fields (blue dashed circle), learning will not generalize to
stimuli at different locations. Training on translation RDK stimuli for 8 to 10 days (top row, third column) instead increases the readout
weight of an area with larger receptive fields, such as MT (top row, fourth column). Because of the larger receptive fields (green
dashed circle), learning will generalize to more distant locations. The same argument suggests that training on a complex optic flow
stimulus (bottom row, third column) increases the readout weight of an area with even larger receptive fields, such as MST. Spatial
specificity will be lower, as the recruited receptive fields of MST neurons are larger (bottom row, fourth column). (b) The configuration
of the trained (thick black circle) and tested (thin black circles) stimulus locations that was used in experiments 1 and 2 for the spatial
specificity (left) and the spatial integration (right) tests. The circles show the stimulus locations, and all had the same distance
(5 degrees) from the center of the screen (red square). (c) Example vector fields for translation RDK (left) and optic flow (right). The
direction and size of each vector represents the motion direction and velocity of a moving dot.

reported previously (Tadin et. al., 2003). After training
with RDKs, we again tested spatial integration with
DGs and found that the peak of the spatial integration
curve (red line) moved rightward, so that the best
performance was obtained for a stimulus size 8.75
degrees. This result cannot be attributed to increased
familiarity with the task or to a general improvement
in motion processing, because the observer’s
performance actually decreased slightly for smaller
stimuli.

To quantify these effects for the population of
observers, we fitted a parametric model to the spatial
integration curves of every observer to estimate their
spatial integration size (see Methods). All six of the
observers who participated in this experiment showed
an increase in spatial integration between the first and
the second training phases (F(1,10) = 8.08, p = 0.017)
(Figure 3c).

Spatial specificity
Most previous studies have found that improvements

in performance after perceptual learning are specific
to the trained location, although recent work has
demonstrated that specificity can be decreased with
appropriate training protocols (Watanabe & Sasaki,
2015). From a theoretical perspective, the degree of
spatial specificity is likely to be associated with the
size of the receptive fields of the neurons contributing
to the perceptual task (Dosher et al., 2013). We,
therefore, predicted that training protocols that increase
spatial integration, as in our results with RDKs (see
Figure 3c), should also exhibit less spatial specificity
(see Figure 2a). To test this idea, at the end of each
training phase, we measured sensitivity across different
spatial locations with DG stimuli (see Figure 2b). To
avoid confounds due to overall visual sensitivity, we
examined performance at locations with the same
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Figure 3. (a) Change in sensitivities in first phase (DG) and second phase (translation RDK). (b) Log (sensitivity) for different stimulus
sizes averaged across observers – post phase 1 (DG in black) and post phase 2 (RDK in red). (c) Spatial Integration measured with DG
for post-DG and post-RDK. (d) Log(sensitivity) for different stimulus sizes for an example observer – post phase 1 (DG in black), post
phase 2 (RDK in red), and post phase 3 (DG in green). (e) Changes in Log sensitivity for different distances from trained locate on
measured with DG from the first to the second training phases (Sp2 − Sp1). (f) Specificity index tested with DG after phase 1 (post DG)
and after phase 2 (post RDK). (g) Specificity index after training on DG and tested on DG (DG) and after training on RDK and tested on
RDK (DG). Error bars show SEM.

retinal eccentricity as the trained location (thick black
circle) but arranged symmetrically around the visual
field. Performance was measured after each phase of
the experiment.

Figure 3e shows the change in sensitivity for DGs
between phase 1 (Sp1) and phase 2 (Sp2), as a function
of distance from the training location for the group
of observers. Here, distance (�d) is expressed as
the distance from the center of the stimulus at the
training location to the center of each test stimulus
(see Figure 2b). After RDK training, the sensitivity
of DG motion discrimination improved at locations
distant from the trained location. The improvement was
greatest at a distance (�d) of 9.2 degrees of visual angle
from the training location (p = 0.0137), indicating that
training with RDKs extended to different locations and
different stimuli. This improvement in performance
was not due to repeated exposure to the task locations,
because sensitivity actually decreased at the trained
location (p = 0.0147). We provide an explanation for
this counterintuitive result below.

To quantify the specificity of perceptual learning
across the training protocol, we defined a specificity
index (Methods), which takes on a value of zero when

sensitivity is equal at all spatial locations. Positive
values indicate higher sensitivity for the trained
location. Specificity was high after the first phase of
training (mean specificity index = 0.1763), consistent
with previous reports showing a lack of transfer of
perceptual learning across spatial positions for Gabor
stimuli (Fahle, 2005). However, after the second phase
of training, the specificity index decreased significantly
to 0.076 (phase 1: 0.1763 ± 0.052 versus phase 2:
0.076 ± 0.0524) (Figure 3f-left). Thus, the level of
performance obtained after training with RDKs was
largely maintained when the stimulus was moved or
changed.

One limitation of these results is that the observers
were tested twice on the spatial specificity task with
the DG stimuli. Thus, some improvement after phase 2
could be attributed to prior exposure to the stimulus at
the untrained location, rather than to the properties of
the training stimulus. Likewise, our protocol could be
considered an instance of “double-training” (Xiao et al.,
2008), which has been shown to decrease specificity. To
examine these possibilities, we trained a second group
of nine observers only on the RDK task and measured
their spatial specificity for the same RDK stimulus. We
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then compared this specificity to that measured in the
first group, after the first phase of training and testing
with DGs. Thus, in this comparison, neither group had
prior exposure to the stimuli at the testing locations;
the only difference was in the stimuli to which the two
groups were exposed. Moreover, each group had only
participated in a single phase of training at the time that
they were tested for specificity. As shown in Figure 3f
(right), the group that was trained on RDKs exhibited
less spatial specificity compared to the group trained
on the DGs (Wilcoxon rank sum test; p < 0.01),
suggesting that the structure of the training stimulus
has an important effect on spatial specificity, apart from
other aspects of the task design (Watanabe et al., 2002).

Task specificity
An alternative possibility is that the increased spatial

integration after RDK training reflects a more general
strategy of integrating out noise, irrespective of the
specific structure of the signal. In that case, training on
any task that requires filtering out noise would increase
behavioral integration. To test this idea, we trained
seven observers on a task that involved similar noise
levels as the RDK task, but did not require motion
discrimination. Specifically, we trained observers on
a face discrimination task (8–10 days), in which two
different faces were shown at the beginning of every
training block (face A and face B), and observers
were asked on every trial whether a probe face was A
or B. Spatial noise was added to the stimuli at levels
determined by a staircase procedure (see Methods).
As the face discrimination task did not require motion
processing, any change in spatial integration of motion
stimuli could be attributed to the spatial noise in the
training stimulus.

We measured spatial integration of DG motion
stimuli before and after training on face discrimination.
Across observers, there was no consistent change in
the spatial integration of motion signals after the face
discrimination training (F(1,12) = 0.712, p = 0.42).
This observation shows that the learning effects after
RDK training were not due to a general improvement
in the ability to filter out spatial noise. From a
physiological perspective, this suggests that learning
does not transfer from the ventral to the dorsal stream.

Experiment 2: Simple translation motion versus
complex radial motion

The results, thus far, can be interpreted in terms of
the function of the dorsal visual pathway. Early stages
of this pathway encode the motion of DG stimuli with
high fidelity (Swindale, Matsubara, & Cynader, 1987;
Weliky, Bosking, & Fitzpatrick, 1996), whereas robust

encoding of the motion of RDK stimuli emerges in
later stages, notably area MT. We argue that the larger
receptive fields of neurons in the later stages accounts
for many of the results seen in experiment 1.

Continuing this line of reasoning, we next consider
the terminal stage of the dorsal pathway, area MST.
Compared with neurons in MT, MST neurons have
far larger receptive fields (Duffy & Wurtz, 1991) and
encode more complex motion patterns, such as radial
and circular motion (Cui et al., 2013; Duffy & Wurtz,
1991; Lagae et al., 1994; Mineault et al., 2012). We
refer to these latter patterns as optic flow (Gibson,
1950). Quantitative studies of neuronal populations
have shown that translation motion of the kind used
in experiment 1 is encoded more effectively in MT
than in MST, whereas the encoding of radial and
circular motion patterns is more robust in MST than
in MT (Cui et al., 2013; Lagae et al., 1994; Mineault
et al., 2012). We, therefore, predicted that perceptual
training with optic flow should further increase the
readout weight of MST neurons, which should, in turn,
manifest behaviorally as increased spatial integration
and decreased specificity.

As in the previous experiment, observers underwent
two phases of training, the first with a relatively simple
motion stimulus and the second with a more complex
stimulus. To facilitate comparison of training effects,
we again probed spatial integration and specificity with
the simpler stimulus set.

Nine new observers were recruited for this
experiment. Figure 2a (bottom) shows a schematic of
the experimental paradigm. Observers went through
two phases of perceptual training. In the first phase
(8–10 days), they were trained to discriminate the
leftward/rightward motion of the RDK stimulus
described above (these data were mentioned above in
the presentation of experiment 1; Figure 3f). In the
second phase (8–10 days), the same group of observers
were trained to discriminate between expansion
and contraction optic flow, also defined with noisy
random-dot patches. The latter requires integration
across motion directions to estimate the pattern
(Figure 2c). Importantly, the sizes of the training
stimuli were again identical across the two phases of
training.

Spatial integration
Observers improved during both training tasks

(Figure 4a) (first phase: F(1,16) = 30.866, p < 0.001 −
second phase: F(1,16) = 23.94, p < 0.001), indicating
that the training protocol was effective. Figure 4b
shows the spatial integration measured after phase 1
(black curve – averaged across observers). The spatial
integration peaked at around 10 degrees. After training
on optic flow motion (red curve in Figure 4b), however,
motion sensitivity for the same translation stimulus
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Figure 4. (a) Change in sensitivities in first phase (translation RDK) and second phase (radial RDK). (b) Sensitivity for different stimulus
sizes for the average of observers – post phase 1 (translation RDK in black), and post phase 2 (radial optic flow in red). (c) Spatial
Integration measured with translation RDK for post-RDK and post-optic flow. (d) Sensitivity for different stimulus sizes for an example
observer post phase 1 (RDK in black), post phase 2 (optic flow in red), and post phase 3 (RDK in green). (e) Changes in sensitivity at
different spatial distances from the trained location measured with (Sp2 − Sp1). (f) Specificity index tested with RDK after phase 1
(post RDK) and after phase 2 (post optic flow). (g) The changes in spatial integration (�SI) are shown for observers who went through
three phases of training. For all observers, spatial integration increased from the end of the first phase to the end of the second phase
(positive values for p2/p1). Six of seven observers showed a decrease in the spatial integration from the end of the second phase to
the end of the third phase (negative values for p3/p2). The black lines and circles show the changes in spatial integration for individual
observers. The blue line shows the change in spatial integration for the observer shown in b. Error bars show SEM.

increased monotonically with stimulus size, indicating
much stronger spatial integration. Moreover, the
sensitivity at smaller stimuli actually decreased after
optic flow training (compare red and black curves at 4-
and 10-degree stimulus sizes). Similarly, for the group
of observers, the mean spatial integration (Figure 4c)
increased sharply after training on complex motion
(F(1,16) = 27.1, p < 0.001).

Spatial specificity
As in the previous experiment (see Figure 3e),

observers were tested with the simpler stimuli
(translation motion in this case) after completion of
each phase of training at a range of positions having
equal eccentricity but different angular locations
relative to the trained location (see Figure 2b). Figure 4e
shows the change in sensitivity for translation motion
between phase 1 and phase 2 as a function of distance
from the training location (Sp2 − Sp1) for the group of
observers. Training on optic flow improved sensitivity to
translation motion at locations distant from the trained
location (at �d = 9.2o, F(1,8) = 8.1747, p = 0.017,

�d = 7o, F(1,8) = 5.8764, p = 0.041), but decreased
the sensitivity substantially at the trained location (F(1,8)
= 10.875, p = 0.010) (see Figure 4e). For the group of
observers, the specificity index decreased significantly
after the second training phase (phase 1: − 0.095 ±
0.05 versus phase 2: 0.0012 ± 0.041) (Figure 4f).
Overall, the results of this experiment support the

idea that more complex optic flow stimuli can increase
the readout weight of neurons in higher areas of the
dorsal pathway that are tuned to more complex moving
patterns, such as MST.

Reversal of training effects
As mentioned above, these training effects were

unlikely to be a simple consequence of double-training,
because they can be observed after a single round of
training in intergroup comparisons (see Figure 3f).
Nevertheless, we sought to ensure that our results could
not be attributed to the fixed sequence of training
phases (simple stimuli followed by complex stimuli) in
our design.
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Following the completion of experiments 1 and 2, we
were able to retain a subgroup of seven observers for a
third phase (3 for experiment 1 and 4 for experiment
2). In this third phase, we retrained the observers on
the same stimulus to which they had been exposed on
the first phase, with training lasting another 8 days.
This experiment served as a further control against the
possibility that the increases in spatial integration seen
in both experiments were due to cumulative exposure
to the motion task. If this were true, spatial integration
should continue to increase after the third phase.

Data from an example observer in experiment 1 are
shown in Figure 3d. This observer’s spatial integration
curve had shifted rightward following the second phase
of training (black and red curves after phases 1 and
2, respectively), but after the third phase it shifted
leftward (green curve in Figure 3d), as predicted from
our main hypothesis. A similar finding was obtained
with an example observer from experiment 2, as shown
in Figure 4d (green line).

All seven of the observers who completed a third
training phase had shown an increase in spatial
integration at the end of the second phase compared
to the first phase (Figure 4g; F(1,12) = 36.322, p <
0.001). After the third training phase, in the majority
of observers (6 of 7), the spatial integration decreased
compared to the end of the second training phase
(F(1,12) = 5.44, p = 0.0378). These results suggest that
increases in integration do not follow from repeated
task performance but rather depend on the stimuli used
during training.

Relationship between learning depth and
change in spatial integration

The changes in spatial processing that we observed in
the previous experiments could be a result of learning
in the first phase, the second phase, or both. In other
words, it could be that training on the first phase of
the experiment actually decreases spatial integration
and increases spatial specificity relative to the baseline,
and that the second task simply undoes the effect of
the first phase. Or the second phase of training could
increase spatial integration and decrease specificity by
a reweighting mechanism that is independent of the
effects of the first training phase. Both strategies would
show the same outcome in terms of change in the
spatial processing from the first to the second phases.

We reasoned that, to the extent that each training
phase is responsible for the reweighting of neural inputs
to perceptual decisions, the depth of learning observed
during a given phase of training should predict the
subsequent changes in integration and specificity. We,
therefore, quantified the depth of learning in both
training phases for every observer (�T1, �T2), as well

Figure 5. Linear regression analysis. Estimated β values for the
two training phases (p1 and p2) for both spatial integration
(left) and spatial specificity (right). Error bars show SEM.

as the change in the spatial integration or specificity
from the first phase to the second phase (�S). Then, we
fit a linear model to predict the observed changes based
on the improvements at the trained location in the first
and the second phases of both experiments:

�S = β0 + β1�T1 + β2�T2

The estimated β i value indicates the variance in �S
across observers that can be explained by depth of their
learning in the ith training phase.

We pooled the data from experiment 1 and
experiment 2 to fit the linear regression model. Our
fitted model (R2 = 0.62) showed that the improvement
in performance during the first training phase failed to
predict subsequent spatial integration (p = 0.43). In
contrast, learning during the second phase exhibited
a positive, statistically significant effect (p < 0.01).
The estimated β coefficients for the two training phases
are shown in Figure 5a (left). Applying a similar
linear regression model to the measured changes in
spatial specificities in experiments 1 and 2 yielded a
similar result (R2 = 0.54): the changes in the spatial
specificity across observers were predicted by the depth
of learning in the second training phase (p = 0.019),
and again the first training phase had a negligible effect
(p = 0.24). Figure 5a (right) shows the estimated β
coefficients for the two training phases. This result
supports the idea that the changes we observed in
spatial integration and spatial specificity are attributable
to the second training phase and not the first one.

Computational model

Our experiments show that training with a complex
stimulus yields a consistent pattern of effects on
performance with simpler stimuli: performance
decreases for stimuli at the trained location and
increases for stimuli far from the trained location.
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Figure 6. The structure of our computational model and example simulated MT/MST neurons. (a) Structure of our computational
model: the stimulus is first processed by a population of MT-like neurons that decompose the stimulus into a distributed
representation of motion directions and locations. MT neurons project to the next motion processing stage that forms the MST stage
of our model. The synaptic connections between MT and MST neurons can be inhibitory (in blue) or excitatory. Before projecting to
MST, the output of each MT neuron passes through a nonlinearity. The output of each MT and MST neuron (Ri) is sent to an adaptive
decoder for linearly decoding the motion direction. (b) Tuning curves of an example MT neuron: tuning mosaics demonstrate the
firing rate of the neuron to every motion type (RDK in left and optic flow in right). The tunings are measured in eight different
positions around the visual field (every mosaic corresponds to a spatial position). (c) Similar to b but, for an example, MST neuron.

Likewise, performance decreases for stimuli smaller
than the trained stimulus, but increases for stimuli
larger than the trained stimulus. We hypothesize that
this pattern of changes results from the hierarchical
structure of the visual pathways and from the
reweighting of neural inputs that occurs during
perceptual learning.

To test this idea, we built a computational model
comprised of two components. The first approximated
the stimulus processing in cortical areas most likely to
be involved in our experiments, namely MT and MST.
A second component of the model implemented a
decoding mechanism that could perform reweighting in
response to exposure to different stimuli.

The first component of the model was based on a
previously published model of neuronal selectivity in
MT and MST that had been statistically validated with
real neural recordings (Cui et al., 2013; Mineault et al.,
2012). Because neurophysiological evidence suggests

that training has little or no effect on the tuning of
neurons in these areas (Law & Gold, 2008; Liu &
Pack, 2017), we fixed this component and constrained
plasticity to occur in the second component, which
was meant to function as a downstream decoding
mechanisms (Law & Gold, 2008). To this end, we used
an adaptive decoder (Jacobs, 2009) that performed an
optimal readout of sensory information to perform
the motion discrimination tasks used in the current
experiments. As in previous work (Dosher et al., 2013),
the decoder had access to neurons at multiple stages
along the sensory processing hierarchy (see Figure 6a).

Figures 6b and 6c show example tunings of simulated
MT (see Figure 6b) and MST (see Figure 6c) neurons
for both RDK (left panel in Figure 6b,c) and optic flow
(right panel in Figure 6b,c) stimuli at eight positions
across the visual field. The tuning curves are plotted as
tuning mosaics, in which each mosaic color-codes the
firing rate of the neuron evoked by one of eight possible

Downloaded from jov.arvojournals.org on 06/17/2020



Journal of Vision (2020) 20(6):13, 1–19 Bakhtiari, Awada, & Pack 13

motions in each motion type (i.e. different directions of
RDK motion or different types of optic flow). Orange
colors indicate high firing rates, and blue colors indicate
low firing rates. The eight tuning mosaics (eight circles
in each panel) show the tunings of the neurons for
eight different positions in the visual field. For example,
the MT neuron shown in Figure 6b has a receptive
field centered at the upper left quadrant, and is tuned
to downward motion (270° motion direction). This
MT neuron, however, is not specifically tuned to optic
flow, as it responds maximally to both expanding radial
and clockwise circular motions at different positions,
consistent with real MT neurons (Lagae et al., 1994).
The MST neuron in Figure 6c, on the other hand, has
a very large receptive field: it responds with consistent
selectivity for spiral optic flow stimuli at most locations
(see Figure 6c right), as is true of many MST neurons
(Graziano, Andersen, & Snowden, 1994; Lagae et al.,
1994). The same MST neuron is also weakly tuned to
upward RDK motion (see Figure 6c left).

Following our protocol in experiment 2, we
implemented two training phases in our model: the
first used simple RDK motion (leftward/rightward
motion discrimination), and the second used optic flow
(expansion/contraction radial motion discrimination).
In both phases, the training stimulus had a fixed size
(diameter = 5°), and was located in the upper left
quadrant (x = − 5°, y = − 5°). Figure 7a shows the
learning curves of the model for the two training phases,
demonstrating the improved sensitivity of the model
after about 500 iterations. Our hypothesis predicts that
training on the simpler stimulus (here, RDK) should
increase the readout weight of MT neurons, whereas
training on the more complex stimulus (here, optic flow)
should increase the readout weight of MST neurons.
As a measure of MT and MST readout weights, we
quantified the ratio of the final pool of sensory neurons
that belonged to MT or MST population at the end of
each training phase. In Figure 7b the readout weights
of MT (in blue) and MST (in green) are shown for the
end of each phase. Consistent with our prediction, after
training on RDK, the MT readout weight was larger
than the MST readout weight (0.9 ± 0.04 vs 0.14 ±
0.05), whereas this pattern reversed after training on
optic flow (0.1 ± 0.04 vs. 0.086 ± 0.05).

The tunings of the neurons with the largest readout
weights at the end of each training phase are shown
in Figure 7c,d for both RDK and optic flow stimuli.
The MT neuron (see Figure 7c) is strongly tuned
to rightward motion, an optimal readout for the
leftward/rightward RDK training task (Butts &
Goldman, 2006). In contrast, the MST neuron (see
Figure 7d) is strongly tuned to expansion motion,
which is the optimal readout for the radial motion
training task in the second phase. This result shows that
the adaptive decoder was capable of finding the most
optimal type of neuron for each training task.

To simulate the specificity tests in our psychophysics
experiments, at the end of each training phase, we
measured our model’s sensitivity on the simpler
stimulus (here, RDK) at different distances from
the training location. Figure 7e shows the changes
in the sensitivity of our model’s output from the
first to the second training phases as a function of
distance from the trained location. Similar to our
psychophysical observations (Figure 2e, Figure 3e),
sensitivity increased at locations more distant from
the trained location, whereas it dropped at the trained
location. This difference between the trained and the
untrained locations can be explained by the differences
in the tunings of the MT and MST neurons in Figure
7c,d. The MST neuron (see Figure 7d) has a larger
receptive field that encompasses more distant locations.
Reading out from this neuron at the end of the second
training phase improved sensitivity at locations that
the receptive field of the MT neuron (see Figure 7c)
could not reach. However, the suboptimal tuning of
the MST neuron for the RDK task compared to the
MT neuron (both in terms of receptive field size and
direction tuning), explains the observed drop in the
performance at the trained location. Thus, in our
model, the improved sensitivity at a larger spatial scale
is necessarily associated with a decrease in the precision
of coding local features. This trade-off is reflected in
the difference of sensitivity changes between the trained
and untrained locations in Figure 7e. Measuring the
model’s sensitivity with different stimulus sizes revealed
the same trade-off: As shown in Figure 7f, after training
with optic flow, the sensitivity of the model to large
stimuli increased, whereas the sensitivity decreased for
small stimuli.

Discussion

Visual perceptual learning is often specific to the
features of the training stimulus, limiting the utility
of standard training procedures (Dosher & Lu, 2017).
As a result, a variety of different factors have been
shown to affect specificity; these include task difficulty
(Ahissar & Hochstein, 1997), task complexity (Green,
Kattner, Siegel, Kersten, & Schrater, 2015), and the
duration of training (Jeter et al., 2009). In this paper,
we have shown that training with more complex visual
stimuli is associated with lower specificity, even when
the task structure is unchanged (Figure 3, Figure 4).
Such decreases in specificity were always accompanied
by an increase in psychophysical spatial integration.
This trade-off between local specificity and global
integration mirrors the gradual increase in the size of
the receptive fields along the hierarchy of the visual
system. Our findings in this study complement previous
studies of visual perceptual learning by suggesting
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Figure 7. Results of the computational model. (a) Learning curves for the two training phases. (b) The average readout weights of the
MT (blue) and MST (green) populations at the end of the first (p1) and second (p2) training phases. (c, d) The tuning mosaics of the
neurons with the largest readout weight after the first c and the second d training phases for both RDK (left panel in both c and d) and
optic flow (right panel in both c and d). (e) The change in the sensitivity of the model as a function of distance from the first to the
second training phases. (f) The change in the sensitivity of the model as a function of the stimulus size after RDK (black) and optic flow
(red) trainings. Error bars show SEM.

that the stimulus tuning of different visual areas is an
important principle that guides the reweighting process.

Relationship to previous literature

Reweighting models of visual perceptual learning
Previous models of visual perceptual learning

suggested that the improved performance in perceptual
learning is due to optimal reweighting of the sensory
neurons for the training task (Dosher & Lu, 1998;
Jacobs, 2009; Law & Gold, 2009; Talluri, Hung, Seitz,
& Series, 2015). Dosher and colleagues (Dosher et al.,

2013; Dosher & Lu, 1998; Petrov, Dosher, & Lu,
2005) showed that a Hebbian learning mechanism
that reweights sensory neurons could capture the
improvement acquired through perceptual learning
with no need for retuning the sensory representations.
Importantly, an extended version of their model
(Dosher et al., 2013), made use of two stages of
visual processing, with larger receptive fields assigned
to the higher area: increased readout weight of
the higher sensory stage led to less specificity. This
work showed how different training tasks could
differentially engage high-level cortical structures,
although it did not examine the influence of stimulus
complexity.
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Training stimulus and the specificity of perceptual
learning

The relationship between different stimuli and
the specificity of visual perceptual learning has been
studied previously (Ahissar & Hochstein, 1997; Jeter
et al., 2009). Namely, training on more difficult tasks
leads to higher specificity (Ahissar & Hochstein, 1997),
and these results can be understood as an increase in
the contribution of lower visual areas comprised of
neurons with narrower tuning and smaller receptive
fields. However, it has been argued that difficulty cannot
be considered as a general feature of a training stimulus,
as for different observers and with different stimuli,
difficulty could be interpreted differently (Jeter et al.,
2009). Therefore, more objective characteristics of
visual stimuli need to be studied for understanding the
relationship between visual stimuli and the specificity
of perceptual learning.

A concept of stimulus complexity akin to the one
used in the current study was used by McGovern
et al. (2012) to study the relationship between training
stimuli and the specificity of perceptual learning. They
evaluated the transfer of learning between different
training stimuli with different levels of complexity
(McGovern et al., 2012), and observed that transfer
was greatest between the stimuli that were closest
to each other in terms of complexity. These results
are reminiscent of our findings that training with
translation RDKs can transfer to DGs (see Figure 3)
and that training with complex optic flow can transfer
to translation RDKs (see Figure 4). We did not examine
the transfer of learning across stimuli of very different
complexity (i.e. between DGs and optic flow), but the
results of McGovern et al. (2012) suggest that such
transfer would be limited.

One difference between our study and the work of
McGovern et al. (2012) is the structure of the training.
The latter trained separate groups on different tasks
and performed group-wise comparisons, whereas we
had observers complete different training regimens
sequentially. In this regard, our approach is similar to
that of Fahle (1997), who trained observers on a series
of tasks and found no transfer in learned improvements.
Indeed, observers showed worse performance on one
task after training on a second task, which is similar
to our finding (see Figure 3, Figure 4) that observers
exhibited inferior discrimination for DGs and RDKs
at the trained location and size after training on more
complex stimuli. The overall picture that emerges is one
of a limited scope for learning: improvements in one
domain (space and features) often are accompanied by
deterioration of performance in another domain. In
some ways, this may not be surprising, as the system
has been optimized by evolution and development for
performance on real-world visual environments, which
contain a broad range of different stimulus features.

Nevertheless, our results suggest that, in cases where
the goal is to improve specific visual capacities, the
design of optimal training paradigms can benefit from
knowledge of the structure and function of the visual
cortex.

Our experimental design in this paper was, in
some ways, similar to the double-training paradigm,
which has been shown to decrease specificity in many
perceptual learning tasks (Xiao et al., 2008; Zhang
et al., 2010). Although it seems likely that richer training
paradigms, with a greater variety of stimulus types and
possible responses, lead to less specificity in learning,
this principle does not account for the pattern of
results that we have reported. In particular, observers’
performance on measurements of spatial specificity
were closely related to the most recently completed
training phase. Thus, in experiment 1, we reported
a stimulus-dependent difference in specificity after a
single training phase (Figure 3f); after experiment 2,
we found that changes in spatial integration could be
reversed with further training (see Figure 4g); and, in
both experiments, the outcomes in terms of spatial
specificity and integration were predictable from the
second phase of training and not the first (see Figure 5).
In total, although some effects of performing multiple
training phases could have been present in our data,
the bulk of the observations could be attributed to the
stimuli used in individual training phases.

A previous study has shown that visual training can
produce broad improvements in contrast sensitivity,
which are often unspecific to the trained location,
stimuli, or task (Levi, Shaked, Tadin, & Huxlin, 2015).
The improved specificity found after the first phase of
training in our experiments is similar to this finding.
However, improved contrast sensitivity does not explain
the improvements we found after the second phase
of training, as all testing and probe stimuli in these
experiments were high-contrast RDKs. Moreover, after
this phase of training, performance at the trained
locations decreased for the test stimuli (DG experiment
1 and RDK in experiment 2), which is inconsistent
with the broad improvements reported previously (Levi
et al., 2015).

Adaptive contribution of sensory neurons in perception
The reweighting model, as well as our results

in this study, presume that the contribution of a
visual area in a single perceptual task can change
adaptively to accommodate different task requirements.
This assumption has been supported by previous
electrophysiology and neuroimaging studies. In
a monkey electrophysiology study, Liu and Pack
(2017) showed that training with RDKs increases the
contribution of MT to DG motion discrimination.
In humans, using transcranial magnetic stimulation
(TMS) and fMRI, Chen et al. (2016) showed that
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the contribution of area V3A in low coherence
RDK task can change after RDK training (Chen
et al., 2016). Particularly, it was shown that before
perceptual learning, V3A and MT were involved
in high- and low-coherence motion discrimination,
respectively. In contrast, after perceptual learning,
V3A became responsible for both conditions (low-
and high-coherences). They used TMS inactivation
to evaluate the involvement of these visual areas in
the tasks pre- and post-training. These results could
seem to be at odds with our results, given that their
RDK training increased the contribution of a lower
visual area (V3A in their case) instead of a higher
one. However, a closer look at their training task can
resolve this apparent contradiction. In Chen et al.
(2016), during the training, observer performance
was measured in terms of the threshold difference
between two motion directions that were discriminated.
Therefore, throughout the training, the observers were
encouraged to distinguish smaller and smaller direction
differences. This training criterion does not encourage
using larger receptive fields, and, actually, V3A with
smaller receptive fields than MT could be a more
optimal readout option (Jeter et al., 2009). In our study,
however, we assessed the observers’ performance with
an adaptive coherence threshold, which would require
larger spatial integration, and, hence, sensory neurons
with larger receptive fields.

Implications for visual rehabilitation in cortical
blindness

Visual rehabilitation training for patients with
cortical blindness has been an important clinical
application of visual perceptual learning. Traditional
training protocols have not shown consistent success
in recovering the visual abilities of such patients
(Pollock et al., 2011). However, recent studies showed
that training with RDK stimuli can lead to partial
recovery of patients’ visual abilities (Das et al., 2014;
Huxlin et al., 2009). Indeed, compared with training
with DG, the improvement transfers more to other
motion directions and other visual tasks (Das et al.,
2014). However, the obtained improvements were still
quite limited to the trained location, and retraining
was needed to extend the acquired recovery across
the scotoma. A more recent study also highlights the
role of early treatment for reducing spatial specificity
in subacute patients with cortical blindness (Saionz,
Tadin, Melnick, & Huxlin, In press).

Our results suggest that transfer across space can
be obtained if we can increase the readout weight
of higher visual areas that have the largest receptive
fields (e.g. area MST). The improved sensitivities in
distant positions from the training location, as shown

in Figure 3e and Figure 4e (e.g. at � = 9.2 degrees
distance in the opposite hemifield), suggest the
involvement of area MST even after the second training
phase of experiment 1. Our work suggests that optic
flow motion discrimination might increase spatial
integration even more than RDKs, presumably by
increasing the readout weight of area MST. However,
as shown in our results, this improved spatial transfer
comes at the cost of sensitivity to small visual stimuli
(see Figure 4). This trade-off might be satisfactory if the
primary goal is to restore functions, such as navigation,
which benefits from spatial integration.

Implications for artificial neural networks

The recent success of deep artificial neural networks
(DNNs) in machine vision tasks, such as object
recognition and image classification (Krizhevsky,
Sutskever, & Hinton, 2012), has been attributed to
the deep hierarchical representation formed across
different layers of these models (Bengio, Courville,
& Vincent, 2013; LeCun, Bengio, & Hinton, 2015).
In the simplest architecture of these models, neurons
from each layer project to the immediate next layer,
and only the last layer feeds information to the decoder
for the decision making task. The tuning parameters
of the neurons across the DNN layers are optimized
based on the training task. As shown previously, these
deep hierarchical representations also resemble the
hierarchical visual representation across different areas
of the ventral visual pathway (Yamins et al., 2014).

Because of this strictly hierarchical architecture,
only the sensory representation of the deepest
layer is accessible to the decoder in many DNNs.
This architecture is quite different from that of
the primate visual cortex, which exhibits numerous
“skip connections,” which bypass hierarchical layers
(Felleman & Van Essen, 1991; Tripp, 2019). This is
important, because inactivation of the hierarchical
flow of information at one stage does not necessarily
impair the perceptual output (Liu and Pack, 2017).
From a computational standpoint, skip connections
could simplify the “credit assignment problem,”
wherein errors in the output lead to a difficult search
for appropriate synaptic changes in the network. With
skip connections, the relationship between low-level
representations and the final output can be shallow,
simplifying the learning rule. In addition to their recent
success in the deep learning applications (He, Zhang,
Ren, & Sun, 2016; Huang, Liu, Van Der Maaten, &
Weinberger, 2017), architectures with skip connections
have also shown to be important in forming latent
representations that are most similar to those in the
visual system (Schrimpf et al., 2018). Thus, although
DNNs have already shown impressive results (Wenliang
and Seitz, 2018), an important future direction will
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be to explore the role of skip connections in visual
perceptual learning (Bakhtiari, 2019).

Keywords: visual perceptual learning, motion
perception, dorsal visual pathway
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